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Abstract

A numerical procedure is used to examine the influence of
transverse shear forces in the yield criterion and rotatory
inertia on the dynamic plastic response of beams. Various
results are presented for a long beam impacted by a mass and
a simply supported beam loaded impulsively, both of which are
made from a rigid perfectly plastic material with yielding
controlled by the Ilyushin-Shapirc yield criterion.

Transverse shear effects lead to a dramatic reduction in
the slopes of the deformed profiles for both beam problems.
Moreover, the slope of the deformed profile underneath the
striker in the impact problem is quite sensitive to the actual
shape of a yield curve, while the maximum transverse displace-
ment is less sensitive. The retention of rotatory inertia in
the basic equations leads to further reductions up to 17 and
10 per cent irn the slopes and maximum transverse displacements,

respectively.
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Notation used throughout the article

defined by eqguations (6) and (17f), respectively.
mass per unit length of a beam

time

transverse displacement defined in Figure 1.

axial coordinate defined in Figures 1, 4(b), and 6(b).
location of interface in equations (2)

beam thickness

mk2, where k is radius of gyration

bending moment and transverse shear force (per unit
length) defined in Figure 1

fully plastic bending moment capacity of cross-section
fully plastic transverse shear capacity of cross-section
M/Mo. Q/Qo

shear angle

curvature

rotation of mid-plane due to bending

defined by equation (9b)

a/at, 3/aT.

Additional Notation used in Section 4

location of interface defined in Figure 4(b).
mass of striker

2
mIr/G

defined by equation (17q)
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iii A

R energy divided by GV02/2
T dimensionless time defined by equation (17i)
Tl dimensionless duration of first phase of motion
! Vo initial velocity of mass G
i b7 S i V2 transverse velocities of beam defined in
| Figure 4(b).
! i ‘
‘% NN V2 \% /Vo. V/Vo, V2/Vo.
= 2.2 !
W lZmMOw/G Vo . 1

62 defined by equation (173)

o x/z ;
8 angular rotation at centre of one half of beam !
o 2 i
0 6M06/GVo E
Xy Ao defined by equations (17b, c)

(c) Additional Notation used in Section 5

2,0 2, locations of interfaces in Figure 6(b).
2 2

I Ir/mL

K defined by equation (544)

2L span of beam

bending energy at time t divided by mLVo2

Ry kinetic energy at time t divided by mLV

. a
RS energy absorbed in shear:+.g deformations at time t |
divided by mLv_’
j T dimensionless time defined by equation (543j)
? Ty dimensionless duration of first phase |
f v initial impulsive velocity




+ V, defined in Figure 6(b)

— 2
‘ W M_w/mL v .
ﬁ& maximum permanent dimensionless transverse displacement
o x/zl ‘
Bl’ 82 zl/L, zz/L
0 angular rotation at supports
A ) 2
6 hoe/vao

v QOL/ZMo
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1. Introduction

It was remarked in References [1] and [2] that the
importance of transverse shear effects has recently become evident in
the dynamic plastic response of various structures. However,
the available theoretical solutions on the dynamic plastic behavior
of beams which retain the influence of transverse shear employ a

square yield condition relating the bending moment (M) and trans-

Ny —

verse shear force (Q) required for plastic flow [1,3,4). It is the
objective of this article to examine the influence of transverse
shear and rotatory inertia on the dynamic plastic response of leams,
the behavior of which is controlled by more realistic yield cri-
teria relating the transverse shear force and bending moment.

A simple numerical procedure which employs piecewise
linear approximations with any desired accuracy for any yield
criterion is developed herein, and used to reconsider the
influence of transverse shear and rotatory inertia effects on

the two dynamic beam problems investigated in Reference [1].

2. Basic Equations
The equilibrium equations for a Timoshenko beam may be

written [1,3]

3Q/93x = mw - q and Q + 3M/dx = Ir$ (la,b)

where the total slope of the centre line of a beam is

w/3x = y + Y, ¢ is the rotation of the line elements along
the centre line due to bending, Yy is the shear angle of points
along the centre line, and the remaining symbols are defined

in Figure 1 and the accompanying Notation.




It may be shown [1,3] that continuity of the transverse
displacement (w) and angular deformation (y) associated with a
moving interface in a rigid perfectly plastic Timoshenko beam
requires [1,3]

Q] = mz2[y] (2a)
and M] = Irézlxl, (2b)
where «k = 3y/9x, and [X] means the difference of X on either
i side of an interface which travels with a velocity z. Various
other kinematic and equilibrium requirements at travelling
interfaces are given by equations (3) to (5) in Reference [1].

There has been considerable discussion in the literature
and no clear resolution as to whether an interaction curve
relating the generalised stresses M and Q is a proper
yield criterion or not. This question has been reconsidered

in Reference [5] by examining all previous objections, including

Heyman's [6], and it was concluded that a yield curve could

be used within the framework of beam theory. It was

suggested that a suitable compromise between the simple local
(stress resultant) and more rigorous non-local (plane stress,
plane strain) theories might be achieved for I-beams when using
a local theory with a maximum transverse shear force based only 5
on the web area. If this viewpoint is accepted, then it is not
possible to describe the local behavior of beams at supports,
or underneath concentrated loads, which is similar to the
prevailing situation with classical elastic beam theory.

It is evident from Figure 5 in Reference [5] that a
number of local and non-local theories predict similar curves

in the M/Mo - Q/Q° plane for beams with rectangular cross-sections.




Ilyushin [7] developed a yield surface for thin shells
with solid cross-sections using the von Mises yield criterion
and the usual assumptions of thin shell theory. Shapiro [8]
extended this theoretical work in order to cater for transverse
shear effects. It might be demonstrated when using standard
relations between inverse hyperbolic and logarithmic functions
that Hodge's [9] yield curve for a beam with a rectangular cross-
section is identical to Ilyushin-Shapiro's theoretical predictions
[7,8,10] for the plastic yielding of a beam which is subjected
to a bending moment and a transverse shear force. This yield
criterion is drawn in Figure 2 and may be written

Q/Q

o

¢/sinh¢ (3a)

and M/M_ = coth¢ - $sinh 2¢ (3b)

o

where ¢ 1is a parameter.
The theoretical procedure developed herein may be used
for any yield criterion, but the Ilyushin-Shapiro yield criterion

(equations(3)) is regarded as exact in this article.

3. Details of the Numerical Procedure

The yield criterion in the proposed numerical procedure
is replaced by an inscribing or circumscribing polygon having
"n" sides, or facets, as illustrated in Figure 2 for the
Ilyushin-Shapiro yield criterion governed by equations (3).

These piecewise linear approximations coincide with the exact

yield curve when n + » . It is evident from the corollaries of
the limit theorems of plasticity that the static collapse loads

associated with inscribing and circumscribing yield criteria




are, respectively, lower and upper bounds to the static collapse
load according to the exact yield condition. The choice of n

is therefore related to the acceptable difference between the

two bounds.
Now 1t is apparent from Figure 2 that two types of plastic
deformation are associated with a piecewise linear yield condition:
Type A. The transverse shear force (Qi) and bending
moment (Mi) are known when the generalised stresses are
located at a node "i". However, the generalised plastic
; strain rate vector is unknown but must lie within the

normals associated with the two adjacent facets "i - 1"

- ae and "i"

Type B. If the generalised stresses lie on a facet "i"

then the generalised plastic strain rate vector must be

normal to this facet. The generalised stresses can lie

anywhere on the facet "i" between the two adjacent nodes

"i" and "i + 1".

A secant linearisation of the exact yield curve is now
constructed for the straight line which cuts the exact yield

condition as shown in Figure 3. The equation of this line is

Q/Qo * (bs/as)(M/Mo) s bs ’ (4)
which may be written
+ ba
Q/Q, * (b /a.) (M/M)) = I b (5)

in order to describe a straight line which cuts the yield

T TR —




curve in any of the four quadrants, where ag and bs are the
absolute values of the intersections with the M/Mo and Q/Qo
axes, respectively.

A tangent linearisation of the exact yield curve is
constructed using straight lines which are tangential to the

exact yield criterion as indicated in Figure 3.

4. Impact of a Mass on a Long Beam
4.1 Introduction

Consider the infinitely long rigid perfectly plastic
beam shown in Figure 4a which is hit by a mass G travelling
with an initial velocity Voo The influence of rotatory
inertia and transverse shear forces on the dynamic plastic
response of this particular beam was examined from an analytical
viewpoint in Reference [1] with the aid of a square yield
condition relating Q and M. A numerical solution is sought
in this section using the Ilyushin-Shapiro yield curve, which
is given by equations (3) and illustrated in Figure 2. The
response of this beam consists of a number of phases which are

described in the following sections.

4.2 First Phase of Motion

Now, guided by the analytical solution presented in
Reference [l1]), it is conjectured that the velocity profile shown
in Figure 4b governs the behavior of this problem. A stationary
hinge develops underneath the striker at x = 0, the region
0<x < z rotates as a rigid body, while z £ x 2z + £ is a
plastic zone, and x > z + £ is rigid and stationary.

The theoretical results in Reference [1]

. i
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indicate that the bending moment is M, and Q 1is negative

and quite small in the plastic zone z < x < z + £. This
suggests that the plastic zone might be confined to the vicinity
of the M/Mo axis of the yield curve in Figure 2 and that the

piecewise linear yield condition shown in Figure 5 might be

adequate. Equation (5) therefore gives
M/Mo * ot eQ/Qo (6)

since a, = 1 and where e = l/bs. If e = 0, then the tangent
line M/Mo = 1, which was used in Reference [l], is recovered,
while e > 0 corresponds to an inscribed facet. These two
cases would bound the predictions of the exact yield surface
quite accurately when Q/Q° remains small.

Normality of the generalised strain rate vector to the
yield condition represented by equation (6) requires

Y/k = -eM_/Q (7

F which may be used to express a&/ax = & + ; in the form
w/dx = § - e(Mo/Qo)aq’)/ax : (8)
It may be shown that equation (la) with q =0

and equations (1lb), (6) and (8) give the partial differential

equation
3%j/x% -2y =0 , (9a)
where 20 2 2. 2 2, -1
Q =mQ  (meM =~ + I Q) ) : (9b)
Thus, equations (9a) and (8) predict
¥ = B sinhQx + Ccosh@x (10) 4
and w = ﬂ-l(B - eMOQC/Qo)coshnnc +
+ al(c - eM_gB/Q )sinhax + D , (11)

where B(t), C(t), and D(t) remain to be evaluated from the




boundary conditions and continuity requirements. If Q and
M are evaluated from equations (la), (1lb), (10) and (11) and

substituted into eqguation (6), then it is found that

D=20. (12)

Now integration of equations (10) and (11) with respect to
time gives

$(x,t) = E sinhQx + FcoshQx (13a)

and w(x,t) = THE - eMonF/Qo)costh+n‘l(p-emom-:/oo)sinmx
(13b)

when satisfying the initial conditions ¥ (x,0) = w(x,0) = 0 ,

{ and where E(t) and F(t) are unknown. Equations (13) and
the requirements wiz,t) = Vz(t) , w(z + 2,t) = 0 and
Wiz + £,t) =0 give

wix,t) = v, exp. {-Q(x - 2z)} (14a)

and  ¥(x,t) = -(mV,/I Q) (1 - eM_0/Q )exp.{-2(x - z)} ,  (l4b)

when using equation (9b) and where 2z < x < z +¢ and ¢2-> « .

Thus, equations (la), (1b), (l4a) and (14b) may be solved
to give the dimensionless transverse shear force and bending

moment in the form

Q(a,T) = -2) KL T, exp. {KA (1 - a)}-21 V.,% exp.{KA(l-a)}
o 2 o 2 (15)
and M(a,T) =1 - 12£K™2 fi_z exp.{Kx (1 - a)}-lZVzifK_l exp.{Kx (1 - a)}

(16)

when 1 < a < » and where the two "constants"” of integration

are found by requiring that the yield condition (6) is satisfied

throughout the plastic zone (1 < o < «) at all times, and




@ =x/z, \=mz/G, A\ =6mM /Q G, Q=0/0 , M=MM,

h
I

= —— S £ 2
eMoQ/QO ' K =Q5/m, V2 = VZ/V ' T = 12mM°t/G Vo ’

o

B $ 5 . =
V2 = V2G /12mMo , and X\ = GVoz/IZMo . (17a-k)

The velocity field in the rigid region 0 < x < z

is linear and may be written

wi(x,t) (mv,/I_{I_&/m + (1 - eM _2/Q ) (z - x)} (18)

when Q(z,t) = V2 and noting that a&(z,t)/ax in the region
@<, x <z 1is equa1+ to @(z,t) given by equation (14b). Thus,

equations (la), (lb) and (18) give

9@, = 2 T, {1 - £ (1 - a/2)ar? + 1ZKAa}/1°K +

+ 22 V041 - £)o/1%K + 0(0,T) (19)

and M(a,T) = -12V, {(1 - £) (1 - a/313%?/2 +1% a®r%/2 } /1% -

- 67,4 a®2%(1- £y /1% - 127, (1 -~ f)ar/K -
- 6aA6(o,T)/AO'+ M(o,T), (20)
+ If [9w(z,t)/dt] = 0 , then equation (5a)

of Reference [1l] gives [Q(z,t)] = O.

Now [Q(z,t)] = 0 implies [M(z,t)] = 0 for a non-linear yield
curve when disregarding the possibility that M has opposite signs
on either side of an interface. Thus, equation (5b) of [1]

gives [&(z,t)] = 0. Finally, &(x,t) = aé(x,t)/ax throughout

the rigid region since y(x,t) = 0, from which follows the

continuity requirement used to obtain equation (18).




W " -

i

B e e

where 0 < a <1,

12 = mxr/c2 A (21) z

and Q(0,T) and M(0,T) are the values of the transverse shear
force and bending moment evaluated at x = 0 . It may be shown

that equations (15), (16), (19) and (20) give

90,1 = V) {(1-5)222% + 20 + 2/K} -2) V.a{l+ (1 - £)A/1%K}
(o) o 2 (22)

2

and (0,1 =1 - 27,1 - £13/1% +3? + 6ra/K + 6f/K2§ 5 1

-6V, k{1 - £)2%/12Kk + 2\ + 2£/K} (23)

when satisfying [Q(1,T)] = [M(1,T)] = 0

Now, equilibrium under the striker travelling with a

velocity V' requires Q(0,t) = Gﬁ'/z ; Or

e
Q(0,T) =7 , (24a)
.L' 20'
where V=GV /12mMo . (24b)

Thus, equations (22) and (24a) vyield

)
V=1-27,{0 - 02%2 + 1% + 12}/1%, (25)
where V = V'/Vo . Equation (25) may also be obtained from

conservation of linear momentum of the entire beam.

If Q(0,T) = -1, M(0,T) =0, and X = 0 during the
tirst phase of motion, then equations (18), (22), (23) and

(25) give

§ e .2 2 2 2 2,-1
: V, =1%r{(1 - £)2,° + 21%R2; + 217} /A (26)

= 2 2 2 2,-1
Ve jQ-02 +1 KjTi(1 - £)1,° + 219K\ +21 } /Ay

(27)
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and vV =1 - T/}\o : (28)
where 201 - 5523 +f61%k - (1 - £)) } 2 212 (6£-RA) A, +
1 (o) Al Ol
2 2
+ 12fT°/K =21 =0 , (29)

and v = v.v(O,t)/Vo "

Equation (5) can be written Q/Q° + (bl/af(M/Mo) = —bl

for the plastic hinge immediately underneath the striker.
Thus, normality of the generalised strain rate vector to this

facet demands

R/Y = (by/a;) (@ /M) (30)
which becomes
(V- V) /(V - V) = (6),/2,) (by/a)) (31)
since y =-(V -V)/L and Kk = -(V - Vz)/z£ for a plastic

hinge of length "4&".

The first phase of motion continues at the node

M(0,T) = 0, Q(0,T) = -1 until the dimensionless time T, when
the generalised strain rate vector in the beam underneath the
striker becomes normal to the adjacent facet of the piecewise
linear yield surface. If equations (26) to (28) are substituted
into the left hand side of equation (31), then the dimensionless

time Tl occurs when equation (31) is satisfied, or

2 2 2
Ty =2 {1 - ©AS + 217K +217H{(1 - £)A (a;/b,)/6 +

-1
+ (1= ) (1 + Ah, H2), + 2R+ 5

A second phase of motion commences at the dimensionless
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time Tl with the generalized stresses at the plastic hinge
underneath the striker lying on facet 1 in Figure 5. This
phase of motion with i#b is eventually completed at T2 when
the generalized stresses have migrated along facet 1 and reached
node 2. A third phase of motion then commences at T2 with the
generalized stresses remaining at node 2 and the generalized
strain rate vector rotating with time until it becomes normal
to the adjacent facet 2 at a dimensionless time Ty. A fourth
stage of motion then follows with the generalized stresses
migrating along facet 2 in Figure 5. It is evident that the
response of this beam consists of a sequence of phases which
are characterized as either type A or type B which are defined
in section 3.

The governing equations are sought in the next two
sections for the cases when the generalized stresses are
either at a typical node i (type A) or on a typical facet i

(type B) of the piecewise linear yield condition in Figure 2.

4.3 Type A Response

As remarked earlier, the generalized stresses remain at
a node during a response characterized as type A. Now, Q(0,T) =
-d; and M(O,T) = -g; at the typical node "i" in Figure 2. Thus,

equations (22) and (23) may be integrated to give

Vz{(l-f)xz/lzx +2) + 2/K} = d; T/do + Cy (33a)
and  27,{(1-5)234% + 312 + 6fA/K+6f/K2} = (1 +g;)T + C,, (33b)
where Cl and C2 remain to be found. If the present phase of
motion commenced at a dimensionless time Ty with associated

values Ak and V2(kY then

i S - i S A a8 s i A 5

i
!
i
{
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¢, = Vz(k){(l-f))\i/lzk + 20+ z/x} - a T/, (34a)
= 2
and ¢, = 2v2(k){(l-f)>\i/1 K + 3xi + 6£A, /K + 6f/K2} A
-+ g T, ' (34b)

Furthermore, eliminating Vz from equations (33) gives A at a

dimensionless time T in the form

{2(1-5) (@; /A, + cl)/sz}A3 - {G(diT/Ao +Cy) - (1-0) (1 + g )T/PK
_(l-f)Cz/IZK}AZ + 2{6f(difr/xo +C)/K (1 + g )T - Cz}A

+ 12£(4, T/A+C,) /K - 2{(1 + g )T + cz}/x = o. (35)
Thus, equation (35) with ¢,y and C, given by equations (34)
predicts A at any T which then allows 72 to be calculated using
equations (33a) and (34a). V may then be evaluated from equation
(18) with x = 0, or

V=7, {(1—f)x ¥ sz}/xzx (36)

while V' is given by equation (25). Finally, %2 and A

follow by differentiating equations (33), or

. & i -1
A o= [ayay - U, {a-02% 2k + 22 + 2/k11[27, {(-652/7k + ] 7, (37a)

and V, = [(1 + g)r {(-0)M%k + 1} -3¢, {(1-6)2%/Pk +
saae2e/k}] [ 22 {1 + (a-pyvr’ki{a-023/Pk +
#3202 + 6£A/K + 6£/K%} - 3 {(1-£)2%/PK +
-1
s2) + 26/K} {(-ENYPK +20 + 2/k} ] . (37b)

\

A
This phase of motion commences at a dimensionless time
Ty when the generalized strain rate vector underneath the striker

* to facet i-1

is at node i and is assumed to be perpendicular
of the piecewise linear yield curve in Figure 2. The general-

ized strain rate vector remains at node i and rotates during

1.

The generalized strain rate vector could also be perpendicular
to facet i at Ty
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the ensuing motion until the phase is completed at a dimension-
less time Tk+1' when the generalized strain rate vector is

perpendicular to facet i or returns to its initial position,

which is perpendicular to facet i-1. Thus, equation (31) gives

Yy - VZ(k))(Vk - V)= (6X, /A ) (b _;/a; ;) (38a)

when the phase commences at Ty and either
5 -7 VI PO
(k+1) 2 (k+1) (k+1) (k+1) = (6X<k+l)/xo)(bi/ai), (38b)

)

o v g )/ (V. g :
(k+1) 2(k+1) (k+1) (k+1)" = (6A<k+l)/ko)(bi_l/ai_l)(38C)

when this phase of motion is completed at Trs1® and

V2 (k+1)
A(k+1) are the initial values for the following phase of motion

which commences at Tk+l'

The transverse velocities within the two zones ¢ < x < z
and z < x < » given by equations (18) and (l4a) may be integrated
numerically with respect to time to predict the contribution to
the displacement profile accumulated during the phase of motion
Tk L% Tk+l’ This is added to the transverse displacement

profile at Tk to give the total transverse displacement.

The bending moment and transverse shear force distribu-
tions in both zones at a dimensionless time T are calculated
from equations (15), (16), (19), (20), (33a), (34a), (35), (37a)
and (37b).

X2k =9, T * 0, and V 0 when motion commences,

2(o)
then Tk+1 = Tl' Ak+l = Al' and v2(k+1) = V2(1) are associated
with the first phase of motion considered in section 4.2 provided

i=14d4;=1,9g;=20, A =0, and v is identified with Vz.

2(1)




It is straightforward to show that C1 = Co = 0 according to
equations (34a) and (34b), while equations (33a), (35), (36),
and (38b) reduce to equations (26), (29), (27), and (31),

respectively. Thus, equation (32) for T, is recovered since

1
'
V is given by equation (25). It is not necessary to satisfy

equation (38a) at To = 0.

4.4 Type B Response

As remarked earlier, the generalized stresses lie on a
facet of a piecewise linear yield curve during a type B response.
Consider the facet i in Figure 2 for which equation(5) may be
written

Q(o,T) + (b;/a;)M(0,T) = -b; (39)

for the plastic flow in the beam directly underneath the striker.
The associated normality requirement according to equations (30),
(31), and (38b) is

(v - VZ)/(V -V = (6X/1,) (by/ay) . (40)

Now, substituting equations (25) and (36) into equation

(40) gives
-1
V, = I%k{a /b)) (1-£)2 /6 + (1-£) (14A)A +I°K(142}) +21°}  (41)

and therefore according to equation (36)

-1
V= {a-0)) + 1%k}{(a /b)) (1-6)A /6 + (1-£) (1)1 + k(1420 +20} . (42)

Equations (22), (23) and (39) yield

2

T = T, 20-023/1% +62% 4 1260k + 126/k + (ay/b A {(1-D)2 /17K 4+
-1

-1
+20 + 2/k}ML + a2y - c (1 +a)) (43)

2

2
X + 12fAk/K + 12f£/K" +

where C; = ¥, i, [2(1-f)Ai/IZK+ 61
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+ (a, /DN LL-DAR/12K + 20 + 2/K) 1= (1 + apT,  (44)

is obtained from the requirement that V and A = A

2 = V2(x)
at T = Tk when this phase of motion commences. The time

derivatives of equations (41l) and (43) give

V, =- T?KA 2(1-£)A + 1-f +22KI{(1-£)2% + (1-f + 212k +

-2

2k + 212} (45)

+ (l-f)Ao(ai/bi)/6 +1I

and A

(L + ag)/T°KH(1-£)22 + (1-£ +2I°K)) + (1-F)A_(a,/b,)/6 +
2

+1%K +21%) /[[6(1—fn2/12x + 12X + 12£/K +

+ (ai/bi)xo{z(l-f)x/xzx + 20L1-6)A% & (1-F 4+ 212K)A +

+ (1-D)A_(a/b,)/6 + PK + 2I°} - [2(1=£) X2 /0% 4 on%

+ 12£A/K + 12£/K% + Ao(a,/b) (A-£)2%PKk + 20 + 2/K}1{2(1-£)) +
T 212K}]. (46)

Thus, Q(0,T) and M(O,T) may be evaluated from equations (22)

and (23) with the aid of equations (41), (43), (45) and (46).
Hence, Q(a,T) and M(q,T) may be calculated from equations (15),
(16), (19) and (20) and the migration of the generalized
stresses followed along the facet i during this phase of motion,
which is completed at a dimensionless time Tk+1' when the

generalized stresses reach the next node i+l or return to node 1i.
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5. Impulsive Loading of a Simply Supported Beam
5.1 Introduction

Consider the simply supported rigid perfectly plastic beam
shown in Figure 6(a) which is subjected to a uniformly distri-
buted impulsive velocity Vo' It was found in Reference [1]
that the behavior of this beam is governed by transverse shear
effects alone and is independent of rotatory inertia when

0 < v £ 1 and where

] v = Q L/2M_. (47)

Furthermore, it may be shown that the associated generalised
stresses M and Q throughout the entire beam either lie in or
within the Ilyushin-Shapiro yield curve. Thus, it is only
required to examine the case v 2 1 in this section. A numer-
ical solution is sought using the Ilyushin-Shapiro yield curve,
which is given by equations (3) and illustrated in Fir.re 2.
The response of this beam consists of two phases, which are
described in the two following sections.

5.2 First Phase of Motion

It is assumed that the beam in Figure 6(a) responds with

the velocity field illustrated in Figure 6(b). The regions 1

0 Xx =2z, and z, 2 x £ L are rigid, while a plastic zone de-
velops within the region z, xS z,.
The transverse shear force (Q) in the plastic zone
(z £ x £ L) is quite small and positive in the theoretical

; analysis presented in Reference [l1]. This suggests that a

linearisation similar to equation (6) may be used, or
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M/Mo =0 U eQ/Qo (48)

when z, o z,. Thus, equations (10) to (12) are again ob-

tained which give equation (13a) and

wix,t) = Q_l(E - fF)coshQx + Q—l(F—fE)sinth + Vo (49)

for z, £ x < z, when satisfying ¢(x,0) = 0 and w(x,0) = V

and where @ and f are defined by equations (9b) and (17f),
respectively.
The velocity fields in the rigid regions 0 £ x < z, and

z, S & T, are

wix,t) C(t) + D(t)x (50a)

and w(x,t)

G(t), (50b)

respectively.

It may be shown that equations (13a), (49), and (50) give

W(a,T) =V, + (V - Vl)a (51)

A+

in the rigid zone 0 < a <1,

ﬁ(a,T) =1+ (V -1)[cosh{K(82-aBl)} + £ sinh{K(Bz-aﬁl)}]/B,(SZa)
and V¥(o,T) = K(l-V)sinh{K(Bz—aBl)}/B, (52b)

where B = cosh{K(Bz-Bl)} + £ sinh{K(Bz-Bl)} (52c)

in the plastic zone 1 £ a < 82/81, and

W(a,T) =1 + (V-1)/B (53)

for the central rigid zone 32/61 La= l/Bl, when satisfying

V;(O't) = Vl, ‘;(let) =V, [‘;(zlyt)] =0, [V;(zzrt)] = 0, and

[@(22,61 = 0, and where




i

18

£ et - 4 2t 2
a = x/zl, Bl = zl/L, 82 = zz/L, ) Y A P e Ir/mL A

V/Vor Vi =V /V o, W(a,t) = &(x,t)/vo, Yo, T) = Ly(x,t) /v,

<|
[

5 2 :
and T = Mot/mVoL . (54a-73)
Now, if él = 52 = 0 during the first phase of motion (i.e.,
no travelling interfaces), then equations (1) and (51) for
0 < a <1 give

d(a,T) = azel(v - V) /4y 408V /20 + 1 (558

and M(a,T) = a3812(V1 -9 /6 - a2812V1/2 - 2a8,v + oa1?(V-¥,) (55b)

l)
since M(0,T) = 0 for simple supports and Q(0,T) = 1 for plastic

flow to develop at the supports, and where

Q(a,T) = 0(x,)/Q,, H(a,t) = M(x,t) /M, T(a,t) = mL?v(x,t)/m_,

1 L 2 "
and Vl(a,T) = mL Vl(x,t)/Mo. (56a-4d)

Similarly, for the plastic zone (1 £ a < B,/81) .

Q(a,T) = -V[sinh{x(ez-aeln + fcosh{x(s2 -aB,) }1/2vBK  (57a)

and M(a,T) = -1 - £V[sinh{K(B,-0aB,)} + fcoshiKk (B, -aBl)}]/sz,

(57b)
where the constants of integration were found by demanding
that equation (48) was satisfied throughout the plastic zone.

Finally,

Q(a,T) = V(asl - B, - £/K)/2vB (58a)




|

and M(a,T) = -1 - V[azslz/z - aB,B, - afBl/K +1/2 +

+(£/K)%/2]1/B (58b)

in the central rigid zone B,/8, S 1/8, when [Q(B,/8,,T)] = 0
and [M(B,/B,, T)] = 0.

Thus, equation (58a) satisfies the symmetry requirement

6(1/81, T) = 0 when
8, = 1 - £/K. (59)

Moreover, Jw(x,t)/dx at x = z; (i.e., &(zl,t)) in the rigid

region equals &(zl,t) in the plastic zone when

v - Vl = -BIKV sinh{K(B2 = Bl)}/B. (60)

Furthermore, the conditions [Q(1,T)] = 0 anéd [M(1,T)] = 0 may

be solved to predict

V = (v812/3 - /2 - 212v)(813/12 + 3112 + g £D/2K% +

il

3120/3K + 12p/K) " (61a)

and Vl = —(2v812/3 - 31/2 + 2vBlD/K - D/K + 212v +

+2vED/K%) (B,°/12 + 128, + £8,D/2k® + DB, %/3k + 1%D/K) ", (61b)

where

D = [sinh{K(B2 -Bl)} + fcosh{K(Bz - Bl)}]/B, (6lc)

and Bl and 62 are related to the length of the plastic zone

and satisfy equation (60) which can be written with the aid

of equations (61) in the form
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K(vg %/3 - 8)/2 - 21%V) sinh {K(8, - 8))}/B = (B, - v8,? -

- 2vB.D/K + D/K - vaD/Kz)/Bl. (62)

Now, equations (61) predict

V=14+9VT and Vl — L VlT (63a,b)

since V = Vl =1 at T = 0. The first phase of motion is
completed when Vl = 0, or
(64)

where Vl is given by equation (61b), and the corresponding
transverse displacement profile and angular deformations can

be evaluated analytically in a straightforward manner.

5.3 Second Phase of Motion

The second phase of motion with él # 0 and 22 =0
commences at T = Tl' when plastic shearing ceases at the
supports (V1 = 0). Thus, equation (51) for the rigid zone

0 £ a 2 1 becomes
W(a, T) = Va, (65)

while equations (52a) and (52b) remain valid for the plastic
zone with 1 S o = 82/81, and equation (53) remains valid
for the central rigid region 82/81 S 1/81. The require-
ment that Bé(x,t)/ax at x = zy in the rigid region equals

J(x,t) in the plastic zone at x = z, gives
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1

vV = B,K tanh{K(B, - g;) }[1 + (£+8,K) tanh{K(B, - 31)}1' . (66)

Equations (1), (52a), (52b), (53), and (65) together

with equation (48), the simply supported boundary cor *"ions,

[6(GIT)] [ﬁ(a'T)] = 0 at a = 62/81 and [6(&;'1‘)] = 0 &. o =1

predict

Q(a,T) = (U8, - VB ) (1 - a%) /4y - VD/2VK - (V - 1)D281/2v (67a)
M(a,T) = (8,7 - 8,7 (a’8,/6 - B a/2 - aI’/B)) +

+ TaDB /K + (T - l)DzaBIBl (67b)

for 0 = a =1,

Q(a,T) = -{V/K + (V - 1)DB; }[sinh{K(B, - aB;)} +
+ fcosh {K(B, - aB,)}]1/2vB (68a)
M(a,T) = -1 - {V + (U-1)8,DK}[cosh{K(B, - aB,)}/BK® +

2

+ fsinh{K(B2 - aBl)}/BK2 - I cosh{K(B2 = asl)}/B] (68b)

for 1 £ a < Bz/Bl, and

Q(a,T) = {V + (V-1)KDB,}(aB; - B, - £/K)/2VB (69a)
Ma,T) = {V+ (V-1koB H1% - 1/k% - (oa?8;% - 2088, + 8,%)/2 -
-£ (B, - aB))/K}/B = 1 (69b) | 4

when B8,/8; =85 1/61, where

Bl = vaozl/Mo' (70)
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The symmetry requirement 6(1/81,T) = 0 again gives
equation (59), while [M(1,T)] = 0 with equation (66) predicts

V[elz/3 + DB /K + 1% + 1/k% - 12 cosh{K(B, - 8,)}/B] -

- [81/3 + 12/8l + DZB cosech{K(B2 = Bl)}/K +

+ DB cosech {K(B2 - Bl)}/KzBl = IZD COth{K(Bz = B1)}/61]Vé1 %=1
i : ; < ; (71)
which again using equation (66) becomes
TR 2 2 2o N2 i =
By = -Q [[el /3 + DB;/K + I® + 1/K I® cosh{K(B8, - B,)}/BlP

2

- 18,%K tanh{k(8, - 8))}/3 + I°

K tanh{x(s2 - Bl)} +

+ D?8,B sech{K(8, - B,)} + DB sech{K(8, - 8,) }/K - Iznxlo]’l.
(72)

P =K tanh{x(e2 - 81)} + fxtanhz{K(B2 - 31’} =

-BlKZ sech2 {K(82 = 81)} (73a)
and

Q=1+ (f + B,K) tanh{K(82 - Bl)} . (73b)

Motion finally ceases at T = T, when V=0, or B, = 8B,
according to equation (66), where 82 is given by equation (59).
Equation (72) must be integrated numerically to give Bl
as a function of T during the second phase of motion. The
velocity V and acceleration % may then be calculated from
aquations (66) and (71), respectively. Hence, the dimensionless

bending moments and transverse shear forces may be determined

from equations (67) to (69). The total transverse displacement
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profile at any position and time is found by a straightforward
integration of the velocity field given by equations (51),
(52a), (53), and (65) when making due allowance for a travelling
interface during the second phase of motion. 1In particular,
the total transverse displacement at the supports is accumu-
lated during the first phase of motion since no further plastic
i flow develops at the supports during the second phase of
motion, i.e.,

wW(0,T) =f VldT = T1/2 - (74)

(e}

where V, and T, are given by equations (63b) and (64),

T Z Tlr and

W(0,T) = Mow(o,t)/mvosz. (75)

The transverse displacement accumulated at the mid-span during

the second phase is
= = T, =
W(1/8y.1,) - W/ery) = [ 2Wase mar , (76

=

where W(l/Bl,T) is given by equation (52a), and

v"m/el,rl) e NS VTl/zs) (77

e TSy p—
At e sttt e s s et

is the contribution from equation (53) for the first phase. |
The total slope at the supports at the end of the first phase

of motion is

= T . i |

L e e - |

} 80,7)) = f (V - Upar/g, = (V- V)1, %728, (79) |
o]

according to equation (51), while the additional slope accumu-
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lated during the second phase of motion is

T
.
6(0,1,) = f var/s, (79)
T

according to equation (65), where

S s 2
8(0,T) = M_6(0,t) /mLy_°. (80)

It may be shown that the various ‘equations in section 4
of Reference [1l] for the problem illustrated in Figure 6a

with a square yield curve are recovered from the corresponding

equations with e = 0 in sections 5.2 and 5.3 here.
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6. Discussion

6.1 Impact of a Mass on a Long Beam

The numerical predictions for the response of the rigid
perfectly plastic beam in Figure 4(a) hit by a mass travelling
with an initial velocity vo are given in Figures 7 to 12.

The numerical values in Figure 7 indicate a relatively
small difference between the results for 2 facets and 50 facets
per quadrant, while the results for 10 facets, which are not
shown in Figure 7, lie very close to the results for 50 facets.
The theoretical results in Figures7 and 8 with transverse shear
retained according to the Ilyushin-Shapiro yield condition but
rotatory inertia neglected (I = 0), are compared with the theo-
retical predictions of Symonds [3] for a square yield condition
and the simple bending only solution. It is clear that trans-
verse shear effects lead to a dramatic reduction in the angle
underneath the striker (|§|) and a significant increase in the
maximum transverse displacement underneath the striker (W).
Moreover, the angle (§) is quite sensitive to the actual shape
of the yield curve, while the maximum displacement (W) is less
sensitive.

The numerical results for the combined influence of trans-
verse shear and rotatory inertia on the dynamic response of beams
having various cross-sections are compared in Figure 9 with the
corresponding theoretical results presented in Reference [l] for
a square yield curve. The curves labelled @ to @ in Figure
9 respectively correspond to W1l4x87, W1l2x40, W24x55 wide flanged
I-sections and a 3/8 in. wide x 1 in. deep rectangular cross-

section beam hit by masses with mH/G = 1.10651. This mass ratio

|
1
|
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was used by Parkes [l11l] in some of his cantilever tests. H

was taken as the total depth of a beam, and Qo was calculated
using an area equal to the beam depth times the web thickness

and a shear yield stress of 00/2 as discussed in Reference [1].
Again the shape of the yield curve exercises an important

effect on the angle 6, while the maximum transverse displace-
ment (W) is fairly insensitive, particularly for the larger
values of Ao. Thus, Figures 8 and 9 suggest that an analysis
with a square yield curve (Reference [l] when I # 0 and Reference
[3] when I = 0) is adequate when the maximum transverse displace-
ments are of interest. However, the Ilyushin-Shapiro yield

curve must be used when the rotation under the striker (8) is
required.

The theoretical results in Figure 10 indicate the relative
importance of retaining transverse shear forces in the yield
criterion and rotatory inertia in the basic equations. The
influence of transverse shear forces is consistent with the
earlier remarks, while rotatory inertia is not noticeable in
the curves for xo = 24.357 (e.g., W1l4x87 wide flanged I-section
with mH/G = 1.10651), but does lead to a reduction in 8 of
10%, approximately, when Ao = 3.31953 (e.g., 3/8 in. wide x
1l in. deep rectangular beam with mH/G = 1.10651).

The partition of the total energy and migration of the
generalised stresses around the Ilyushin-Shapiro yield curve

are shown in Figures 11 and 12, respectively, for PN 8.102

and I = 0.4276.
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6.2 Impulsive Loading of a Simply Supported Beam

The numerical predictions for the dynamic plastic response
of a simply supported beam governed by the Ilyushin-Shapiro
yield curve with e = 0.06 and subjected to a uniform impulsive
velocity Vo as shown in Figure 6(a) are presented in Figures

13 to 17. The curves labelled (:) in Figures 14 and 16 corre-

spond to a beam with a rectangular cross-section, and the

curves labelled @ . @ , and @ are associated with the wide-

flanged I-sections having the cross-sections respectively i
labelled @ ' @ ' and@in Figure 9. The results in Figures

13 to 16 are virtually indistinguishable from the corresponding

theoretical values presented in Reference [1] for

a square yield curve. Thus, the simpler theoreti-

cal predictions in Reference [1l] for a square yield curve are
adequate for the problem shown in Figure 6(a). The presence

of a central rigid zone 8,/8; < a = 1/B, which was considered
in sections 5.2 and 5.3 does not appear to influence the results
significantly. Indeed 82 = 0.985 for the particular beam ex-
amined in Figure 17 which means that the central rigid zone has
a total width of only 0.03L in this case. The duration of the
first phase of motion is T, = 0.10765 which is to be compared ;

1

with 5 Wy 0.10795 found in Reference [1].
It may be shown that the generalised stress profiles associ-
ated with the theoretical solutions having I = 0 in References

[1] and [4] for a square yield curve, lie within or on Robinson's

circular yield curve [5,10] which in turn inscribes the Ilyushin-
Shapiro yield curve. Thus, the theoretical results with I = 0

in section 4.1 of Reference [4] and in Reference [l1l] are identi-

B
|
|
!
e |
! 3
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| cal to the corresponding theoretical predictions using an
Ilyushin-Shapiro yield curve, while the theoretical predictions
in Reference [1] with I # 0 are virtually indistinguishable
from the numerical results obtained herein.

It is evident from Figure 14 for V = 1.5 that the retention
of transverse shear effects in an analysis with I = 0 gives
the same values of W (dimensionless transverse displacement at

mid-span) which are predicted by a simple bending theory, while

the consideration of I leads to a reduction in the mid-span

transverse displacements (W) up to ten per cent, approximately.
On the other hand, the inclusion of transverse shear effects
causes a significant reduction in 6 (dimensionles; angle of ro-
tation at supports), while consideration of rotatory inertia (I)
is responsible for a further decrease up to 17 per cent, approx-
imately.

The energy partition in Figure 15 for v = 1.5 is changed
significantly when the influence of transverse shear effects
is included in the yield curve since fifty per cent of the ini-

tial energy is then absorbed due to shearing deformations alone

when T 2 1/6. The incorporation of rotatory inertia (I) in the

analysis causes a further increase in the amount of energy ab-
sorbed due to transverse shear forces.

It is evident from the numerical results in Figure 16 that
transverse shear effects and rotatory inertia have a negligible
influence on the maximum permanent transverse displacements at

the mid-span when v>4, approximately.
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6.3 General Comments

In order to avoid complete severance of the beams at the
shear hinges it is necessary to ensure that the maximum shear
displacements in the numerical studies are less than some pro-
portion of the beam thickness [12].

The material was idealised as rigid perfectly plastic in
this article since this characterisation gave satisfactory
agreement between theoretical predictions and experimental re-
sults for many problems when the external dynamic energy was
greater than about five times the strain energy which corld be
absorbed in a wholly elastic manner [13]. In addition, the
influences of materjial strain rate sensitivity and geometry changes,
or finite transverse displacements, were disregarded. These
assumptions are probably reasonable for impulsively loaded
strain rate insensitive beams when supported withouf axial re-
straints, and for infinitely long strain rate insensitive beams
struck by a mass when the maximum transverse displacements are
less than the beam thickness, approximately [13]. The influence
of material strain hardening has been neglected in this work,
but some general remarks on this topic are presented in Refer-
ences [13, 14].

The numerical procedure developed in this article could
be used to examine the behavior of the two beam problems when
governed by any convex yield criterion which relates the trans-
verse shear force and bending moment required for plastic flow.
Moreover, the numerical scheme could be employed to solve many

other beam problems in an inexpensive manner and appears suffi-

i AR, SO g
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ciently attractive to warrant further development in order to

study the dynamic plastic response of plates and shells.

7. Conclusions
A numerical procedure has been used to examine the in-
fluence of transverse shear forces in the yield criterion
and rotatory inertia on the dynamic plastic response of beams.
Various results are presented for a long beam impacted by a
mass and a simply supported beam loaded impulsively, both of
which are made from a rigid perfectly plastic material with

yielding controlled by the Ilyushin-Shapiro yield criterion.

Transverse shear effects lead to a dramatic reduction in
the slopes of the deformed profiles for both beam problems.
Moreover, the slope of the deformed profile underneath the
striker in the impact problem is quite sensitive to the actual
shape of a yield curve, while the maximum transverse displace-
ment is less sensitive. The retention of rotatory inertia
in the basic equations may lead to a further 10 per cent

reduction in the slope of the impact problem, and reductions 3

of up to 17 per cent and 10 per cent for the slopes and trans-

verse displacements of the impulsive problem, respectively.
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with an Initial Velocity Vo'

Square Yield Curve [3]

- ¢ Ilyushin-Shapiro Yield Curve with 50 facets
per quadrant.

Simple Bending Solution [3]




Figure 9. Infinitely Long Beam hit by a Mass G travelling

with an initial velocity Vo.

Ilyushin-Shapiro Yield Curve with 50 facets
per quadrant and e = 0.06.

Square Yield Curve [1]

@ x,
@ 1,

Figure 10. Infinitely Long Beam hit by a Mass G travelling

24.357, 1 = 0.4861, (@ A = 18.215, 1 = 0.4754

8.102, I = 0.4276, (:) Ao = 3.319, T = 0.3194

with an initial velocity VO.
(a) ) F 3.31953.
1. Ilyushin-Shapiro Yield Curve with 50
facets per gquadrant and € = 0.06, I = 0.3194
2. as 1. but with I =0
3. Simple bending solution [3]
(b) A ™ 24.357
1. Ilyushin-Shapiro Yield Curve with 50
facets per quadrant and € = 0.06, I = 0.4861.
2. as l. but with I =0
3. Simple bending solution [3]
Figure 1l1. Energy Ratios for an Infinitely Long Beam hit by

a Mass G travelling with an initial velocity Ye"

Ao = 8.102 and I = 0.4276.

Ilyushin-Shapiro Yield Curve with 50 facets

per quadrant and e = 0.06.

Square Yield Curve [1]
Figure 12. Migration of Generalised Stresses for an Infinitely
Long Beam hit by a Mass G travelling with an initial

velocity ¥o: Ao ™ 8.102 and I = 0.4276. Ilyushin-Shapiro
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yield curve with 10 facets per quadrant and e = 0.06.

is rigid zone shown in Figure 4(b). The
time intervals refer to the plastic hinge underneath the
striker.

Figure 13. Dimensionless Bending Moment (M) and Transverse
Shear Force (Q) across the Beam in Figure 6(a) at
Various Dimensionless Times (T).
v=2,1I=0.1443, e = 0.06, Tl = 0.10765 and a = x/zl
where z, = 0.67357L.

Figure 14. Simply Supported Beam with v = 1.5 and e = 0.06

Subjected to an Impulsive Velocity Vo

wW(T), 6(T), x indicates T = T,
@ 1=0.1924, @ 1=0.1056, @ 1 =0.0521.
B: simple bending theory, S: I = 0 and e = 0 (square
yield) [4].

Figure 15. Dimensionless Energy Ratios for the Simply Supported
Beam in Figure 6(a) with v = 1.5 and e = 0.06 Subjected

to an Impulsive Velocity Vo.

simple bending theory

I

0 and e = 0 (square yield) [4],

I

0.1924, x indicates T = Tl'

Figure 16. Variation of Maximum Permanent Transverse Displace-
ment (W&) of Simply Supported Beam in Figure 6(a) with v
aind e = 0.06.

. simple bending theory

I =0 and e = 0 (square yield) [4].
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@ 1v

Figure 17. Migration of Generalised Stresses in the Simply

0.2886, (@ 1Iv
0.0781, (@ 1v

0.1584,

0.0600

Supported Beam in Figure 6(a).

v=2,1I=0.1443, e = 0.06, T, = 0.10765.
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